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Abstract. The current–voltage characteristic (CVC) of quantum wires at low temperatures
is considered theoretically. Three mechanisms of electron relaxation are taken into account:
(i) elastic momentum relaxation by impurities or defects, (ii) inelastic energy relaxation by
acoustic phonons and (iii) optical phonon emission. The latter causes a very fast energy loss for
electrons reaching the energy of optical phonons. If the two first mechanisms are characterized
by energy-independent relaxation times, the CVC has a sublinear shape with saturation. If the
elastic relaxation time increases with electron energy, which is typical for impurity scattering,
the CVC is characterized by a non-monotonic field dependence of differential resistance with a
minimum at some critical field. Most analytical results are obtained for a wire with one occupied
subband but the main features of a multi-subband case are also discussed.

1. Introduction

In the past few years, the physics of low-dimensional electron systems, so far concerned
almost entirely with two-dimensional structures, has had great success in studying one-
dimensional electron systems—quantum wires. These systems demonstrate a series of new
interesting phenomena, in particular, in their kinetic properties. The physical nature of these
phenomena depends drastically on the relation between the wire length and the electron mean
free path. For short, ballistic wires, the current is determined by emission from contacts
and described by the well known Landauer formula [1] which can be generalized to the
case of a high applied voltage [2] and describe the current–voltage characteristic (CVC) of
the system.

In the present work the opposite limit of long wires will be discussed. In this case, for
not very low temperatures, when the localization phenomena are of minor importance, the
CVC can be found from the kinetic equation and is determined by mechanisms of electron
scattering. The latter in quantum wires have a series of specific features such as, for example,
the absence of low-angle scattering [3] and the suppression of electron–electron scattering
[4]. The electron–phonon interaction in one-dimensional systems also has some specific
features (see, e.g., [5] and references therein). As a result, the distribution function of one-
dimensional electrons in an applied electric field and, hence, CVC may differ drastically
from those in three- and two-dimensional systems. In spite of a large number of papers on
momentum and energy relaxation in one-dimensional electron systems, very few of them
discuss directly the problem of CVC. There are several numerical calculations of the drift
velocity–electric field dependence [6–9] but, as with any numerical results, they do not give
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us the possibility of tracing the dependences of CVC on different parameters characterizing
the sample and scattering processes in it.

Some analytical results were obtained in [10]. The author demonstrated that the
predominance of optical phonon scattering in the absence of electron–electron interactions
might cause an anomalous carrier cooling and a ‘jagged’ shaped distribution function. One
may expect that an additional quasi-elastic scattering (say, by acoustic phonons) will smear
the distribution function singularities and influence the CVC. This problem was mentioned
by the author very briefly.

In the present paper we consider a simple model which takes into account the optical
phonon scattering as well as additional elastic and quasi-elastic scattering in quantum wires.
The model allows us to obtain analytical results for the distribution function in an electric
field and for the CVC in quantum wires.

2. Basic equations

We consider a quantum wire with the standard quasi-one-dimensional dispersion law:

E = EN + p2

2m
(1)

wherep is the momentum along the wire (x-axis) andN numerates discrete energy levels
for the motion inyz-plane. Three main scattering mechanisms will be considered:

(i) optical phonon emission,
(ii) elastic impurity or defect scattering and
(iii) quasi-elastic acoustic phonon scattering providing energy relaxation for electrons

with energies less than the optical phonon energy ¯h�.

The characteristic times of these processes will be assumed to form the hierarchy
τop � τi � τac, which is typically the case in most semiconductors. The lattice temperature
will be assumed low enough that processes of optical phonon absorption can be ignored.

We begin with the purely one-dimensional case with one occupied subband and describe
electrons by their distribution functionf ±(p) where superscripts+ and− correspond to
positive and negative momentum direction (we have omitted the subband index). In the
momentum interval|p| < p0 ≡

√
2mh̄� the optical phonon emission is prohibited by energy

conservation. Since the elastic impurity scattering may cause only transitions betweenp

and−p states, the kinetic equation for|p| < p0 has the following form:

eF
df −(p)

dp
= f +(−p)− f −(p)

τi(p)
− f

−(p)− f0(p)

τac(p)
(2)

eF
df +(p)

dp
= f −(−p)− f +(p)

τi(p)
− f

+(p)− f0(p)

τac(p)
. (3)

HereF is the electric field andf0 is the equilibrium Fermi distribution function.
In the caseτop � τi, τac we may assume that, when the electron momentum reachesp0,

an optical phonon is emitted immediately causing electron transition from thep = p0 to the
p = 0 state†. The continuity of a flux inp-space atp = 0 gives the following condition:

f +(0) = f −(0)+ f +(p0) (4)

† Since the electric field accelerates electrons in the positive direction of thex-axis, then in the case when both
thermal and Fermi energies are less than ¯h�, the statep = −p0 can never be reached.
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which can be used as a boundary condition for the system (2), (3). The other condition to
be used is the normalizing condition∫ 0

−∞
f −(p) dp +

∫ ∞
0
f +(p) dp =

∫ ∞
−∞

f0(p) dp = πh̄n (5)

reflecting the conservation of one-dimensional electron densityn.
For further calculations it is more convenient to replacef − andf + with the symmetric

fs = (f + + f −)/2 and antisymmetricfa = (f + − f −)/2 components of the distribution
function. In terms of these quantities the kinetic equations (2) and (3) forτi � τac can be
written as

eF
dfs(p)

dp
= −2fa(p)

τi(p)
(6)

eF
dfa(p)

dp
= −fs(p)− f0(p)

τac(p)
. (7)

The conditions (4) and (5) are transformed into

2fa(0) = fs(p0)+ fa(p0) (8)∫ ∞
0
fS(p) dp =

∫ ∞
0
f0(p) dp = πh̄n

2
. (9)

3. Analytical results for constant relaxation times

The equation system (6), (7) can be solved explicitly for the case of momentum-independent
relaxation timesτi andτac. If we assume electrons to be completely degenerate and introduce
the dimensionless momentumP = (p/eF )√2/(τacτi), then the general solution forfs can
be written as

fs(P ) = 1+ A exp(P − PF )+ B exp(PF − P) for 0< P < PF

fs(P ) = C exp(P − PF )+D exp(PF − P) for P > PF .
(10)

Here PF is the dimensionless Fermi momentum. ConstantsA,B,C,D are to be found
from (8) and (9) and the matching conditions atP = PF . This gives

A+ 1/2= C = (1− α)[1− exp(2PF )]

2[exp(P0)− 1][(α + 1) exp(P0)− 1+ α]
(11)

B + 1/2= D = (1+ α) exp(2P0)[1− exp(2PF )]

2[exp(P0)− 1][(α + 1) exp(P0)− 1+ α]
(12)

whereα = √τi/τac.
Now we can find the CVC. The current

j = 4e

πh̄m

∫ p0

0
pfa(p) dp = −e

3F 2τi
√

2τacτi
πh̄m

∫ P0

0
P

dfs
dP

dP

is easily calculated with the help of (10), (11) and (12) and, returning to ordinary units, we
have eventually

j = 2e2Fτi

πh̄m
{pF − [p0

√
τi/τac exp(

√
2p0/eF

√
τacτi)[exp(

√
2pF/eF

√
τacτi)

− exp(−
√

2pF/eF
√
τacτi)]][[exp(

√
2p0/eF

√
τacτi)− 1]

×[(
√
τi/τac + 1) exp(

√
2p0/eF

√
τacτi)+

√
τi/τac − 1]]−1}. (13)
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The expression (13) has simple asymptotics. AtF → 0 the first term dominates and
we have the ordinary Ohm law:j = ne2τiF/m. At F →∞ electrons become distributed
uniformly in the momentum interval 0< p < p0 and the current saturates:

j = js ≡ enp0√
2m
= const.(F ). (14)

The saturation of current at high fields is a consequence of our boundary condition (4)
corresponding to the limitτop → 0. More rigorous analysis for a finiteτop (see numerical
calculations in [6]) shows that instead of saturation, very slow growth of current (quasi-
saturation) must take place, followed by its fast growth due to the electron ‘runaway’ at
very highF , so our approach is expected to become inadequate for very large electric fields.

4. Energy-dependent relaxation times

The energy dependence ofτi andτac ignored in the previous section may change noticeably
the character of the CVC. Typically, the relaxation times decrease with decrease in energy
due to the high density of states near the subband edge in a one-dimensional system. As
we saw in the previous section, the answer for the CVC is almost independent ofτac
which allows us not to take into account its energy dependence. In contrast, the dispersion
of τi can be of primary importance. We consider the model case of a linear relaxation
time–momentum dependence:τi(p) = τ0p. Such a dependence takes place when the
matrix element of scattering is momentum independent (for instance, for the scattering by
short-range impurity potential) andτi(p) is determined only by the one-dimensional density
of states∼(E − E1)

−1/2 (see, e.g., [11]).
In this case the basic equation system (6), (7) can be written as

P̃
d2fs

dP̃ 2
+ dfs

dP̃
= fs(P̃ )− f0(P̃ ) (15)

with P̃ = 2p/(e2F 2τ0τac) and for degenerate electrons has the following general solution:

fs(P̃ ) = 1+ AI0(2
√
P̃ )+ BK0(2

√
P̃ ) for 0< P̃ < P̃F

fs(P̃ ) = CI0(2
√
P̃ )+DK0(2

√
P̃ ) for P̃ > P̃F

(16)

whereI0 andK0 are the Bessel functions of an imaginary argument.
Applying the same boundary conditions as in section 3, we find the equation system for

the constants in (16):

AI0(2
√
P̃F )+ BK0(2

√
P̃F )− CI0(2

√
P̃F )−DK0(2

√
P̃F ) = −1

AI1(2
√
P̃F )− BK1(2

√
P̃F )− CI1(2

√
P̃F )−DK1(2

√
P̃F ) = 0

eFτ0

2
[B + C

√
P̃0I1(2

√
P̃0)−D

√
P̃0K1(2

√
P̃0)] − CI0(2

√
P̃0)−DK0(2

√
P̃F ) = 0 (17)

A

√
P̃F I1(2

√
P̃F )+ B[ 1

2 −
√
P̃FK1(2

√
P̃F )] + C[

√
P̃0I1(2

√
P̃0)−

√
P̃F I1(2

√
P̃F )]

+D[
√
P̃FK1(2

√
P̃F )−

√
P̃0K1(2

√
P̃0)] = 0.

After calculation of the constants, the current can be readily found:

j

js
= −αx

5

8φ

[
(A− C)F1

(
2
√
φ

x

)
− (B −D)F2

(
2
√
φ

x

)
+ CF1

(
2

x

)
−DF2

(
2

x

)]
. (18)
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HereF1(y) =
∫ y

0 t
4I1(t) dt , F2(y) =

∫ y
0 t

4K1(t) dt , φ = pF/p0, α = (τ0p0/τac)
1/2, js is

given by (14) and the dimensionless electric fieldx = eF (τ0τac/2p0)
1/2.

For very low and very high fields analytical expressions for the CVC can be derived.
At x � 1 the CVC is linear:j = 2αφxjs and saturates atx � 1: j = √2js . At first
glance, the situation is similar to the caseτi = constant considered above. However,
detailed calculations of the total CVC showed at least two considerable distinctions. First,
very fast momentum relaxation at smallp inhibits the establishing of uniform distribution
of electron momenta at largeF which results in very slow, logarithmic saturation of the
CVC. Second, the CVC, after the initial linear part, may have an interval of superlinear
growth. The effect is connected with the electron heating which increases its mean energy
and, hence, increases energy-dependent relaxation timeτi until the optical phonon emission,
resulting in the increase of resistance and saturation of CVC, becomes essential. As a result,
the wire resistivityρ = F/j as well as the differential resistivity dF/dj depend on the
electric fieldF non-monotonically. Recent measurements on GaAs/AlGaAs quantum wires
whose properties were described in [12] have confirmed the presence of this non-monotonic
dependence [13].

The total CVC can be calculated only numerically with the help of (18) and (17).
Figure 1 shows the results of such calculations. One can see that the wire resistivity at
first decreases and then increases noticeably. This first effect is connected with the electron
heating which increases its mean energyẼ and, hence, energy-dependent relaxation time
τi . Further increase of the electric field causes effective optical phonon emission resulting
in the increase of resistance and saturation of the CVC described in section 3†.

Thus, the wire resistivity–electric field dependence may have a non-monotonic behaviour
with a minimum. The minimum becomes less pronounced with the increase of Fermi energy
due to decrease of change iñE equal toEF/2 atF → 0 and toh̄�/2 atF →∞. Figure 2
demonstrates the position of this minimum as a function of wire parameters.

It is worth noting that both above-mentioned effects, responsible, respectively, for super-
and sublinear CVC, are not specific only for quantum wires and may occur, in principle, in
two- and three-dimensional electron systems as well. However, one-dimensional systems
are more favourable for observing the non-monotonic behaviour ofρ(E) shown in figure 1.
Thanks to the decreasing energy dependence of one-dimensional density of states,τi in
quantum wires will increase with electron momentum faster than in electron systems of
higher dimensionality and the superlinearity of the CVC will be more pronounced. In
particular, for the caseτi(p) = τ0p considered above, the same scattering mechanism in a
two-dimensional electron gas will result inτi = constant(p) which excludes the possibility
for the CVC to have a superlinear part and non-monotonicρ(E).

5. Multi-subband case

So far we have considered the purely one-dimensional case with one single occupied
subband. Such an approach is correct atEF < E2 in low electric fields but it may
become not the case in higher fields where hot electrons may acquire enough energy to
undergo intersubband transitions. Strictly speaking, the formulae of the previous sections are
adequate only provided the inequality ¯h� < 1 ≡ E2−E1 takes place as well. Otherwise, we
must take into account the contribution of higher subbands with their distribution functions
f ±i . For instance, in the case of two subbands, (2) and (3) must be replaced by the following

† As already mentioned at the end of section 3, in a more realistic model with non-zeroτop the CVC will have
no saturation.
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(a)

(b)

(c)

Figure 1. Current–voltage characteristicsj (F ) at (a) low and (b) high electric fields and
(c) resistivityρ = F/j of a quantum wire forα = 0.1, φ = 0.1 (curve 1),α = 0.1, φ = 0.3
(curve 2) andα = 0.3, φ = 0.1 (curve 3). Herex = eF (τ0τac/2p0)

1/2 is the dimensionless
electric field.
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Figure 2. The dependence of dimensionless electric fieldxmin = eFmin(τ0τac/2p0)
1/2

corresponding to the minimum ofρ = F/j on the dimensionless Fermi momentumφ = pF /p0

for α = 0.1 (curve 1) andα = 0.3 (curve 2).

more general system:

eF
df ±1 (p)

dp
= f ∓1 (−p)− f ±1 (p)

τ11
+ f

+
2 (
√
p2− 2m1)− f ±1 (p)

τ12

+f
−
2 (−

√
p2− 2m1)− f ±1 (p)

τ12
− f

±
1 (p)− f0(p)

τac
|p| < p0 (19)

eF
df ±2 (p)

dp
= f ∓2 (−p)− f ±2 (p)

τ22
+ f

+
1 (
√
p2+ 2m1)− f ±2 (p)

τ12

+f
−
1 (−

√
p2+ 2m1)− f ±2 (p)

τ12

−f
±
2 (p)− f0(p)

τac
|p| <

√
p2

0 − 2m1. (20)

Hereτij are elastic relaxation times for both intra- and intersubband scattering (which are,
generally speaking, momentum dependent). We do not consider here the particular resonant
caseh̄� = 1 [14].

Electrons in the first subband withp > p0 as well as those in the second subband with

p >

√
p2

0 − 2m1 can fall to the bottom of the first subband by emitting optical phonons.
If the emission processes are very fast, then

f +1 (0) = f −1 (0)+ f +1 (p0)+ f +2 (
√
p2

0 − 2m1). (21)

In the second subband, the pointp = 0 has no singularity and

f +2 (0) = f −2 (0). (22)

Though the system (19)–(22) is too complicated to be solved analytically, some
qualitative conclusions can be drawn.

Hot electrons in the second subband can emit optical phonons and pass to the first
subband with the characteristic rateτ−1

op . The returning process 1→ 2 can take place in
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the course of elastic scattering with the rateτ−1
12 . In our modelτop � τ12 and, for strong

electron heating, when a considerable fraction of electrons has energies comparable with
h̄�, the second subband becomes depleted of electrons. So, in the high-field limit the
electron distribution becomes strongly non-equilibrium with almost all electrons occupying
the ground subband (even if their energy exceeds the edges of excited subbands). As a result,
in this limit the formulae of the previous sections can be applied to the multi-subband case
as well.

Now we consider the case of lower electric field and compare the conductivities of two
wires having the same electron concentrationn but different (either one or two) occupied
subbands. If relaxation times (and, hence, electron mobilities) do not depend onp and
are the same in the both subbands, the low-field (linear) conductivities of two wires must
be equal. So, the CVC for the multi-subband case having the same low- and high-field
asymptotics as in the wire with one subband, does not noticeably differ from (13).

Energy dispersion of relaxation times changes the situation. It can be easily seen that in
the multi-subband case the average equilibrium electron momentum will be less than in the
wire with one subband and the same electron concentration. As a result, for the momentum
relaxation time increasing withp, as in section 4, the multi-subband case is characterized
by smaller low-field conductivity. The superlinear section of CVC shown in figure 1 will
be apparently less pronounced than in the one-subband case. This superlinearity is caused
by the increase of electron momentump and, hence, ofτi with the electric field. We may
expect that in moderate fields, when the optical phonon emission is still of minor importance,
relative occupation of excited subbands will increase withF , resulting in a slower increase
of effectivep.

To summarize, in quantum wires with several occupied subbands the CVC qualitatively
has the same properties as described in sections 3 and 4 but quantitative distinctions are
possible, especially at not very high fields.
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